Synthesis of Analogues of the Antitumor（ $1 \rightarrow 6$ ）－Branched （ $1 \rightarrow 3$ ）－Glucohexaose

ZENG，You－Lin（曾佑林）ZHANG，Jian－Jun（张建军）KONG，Fan－Zuo＊（孔繁袮）
Research Center for Eco－Environmental Sciences，Chinese Academy of Sciences，Beijing 100085，China

Abstract

β－D－Glcp－$(1 \rightarrow 3)-[\beta$－D－Glcp－$(1 \rightarrow 6)$－$] \alpha$－D－Manp－$(1 \rightarrow 3)-\beta$－D－Glcp－$(1 \rightarrow 3)-[\beta$－D－Glcp－$(1 \rightarrow 6)-] D$－Glcp（18）and β－D－Glcp－$(1 \rightarrow 3)$－$[\beta$－D－Glcp－$(1 \rightarrow 6)$－$] \alpha$－D－Manp－$(1 \rightarrow 3)$－β－D－Glcp－$(1 \rightarrow 3)$－$[\beta$－D－Glcp－$(1 \rightarrow 6)-] \beta$－$D$－Glcp－$D$－$(1 \rightarrow 3)$－ Glcp－ $1 \rightarrow$ OMe（29）were synthesized as the analogues of the immunomodulator β－D－Glcp－$(1 \rightarrow 3)$－$[\beta$－D－Glcp－ $(1 \rightarrow 6)$－$] \alpha$－D－Glcp－$(1 \rightarrow 3)$－β－D－Glcp－$(1 \rightarrow 3)$－［ β－D－Glcp－$(1 \rightarrow 6)$－$] D$－Glcp through coupling of trisaccharide donors 9 with trisaccharide acceptor 16 and tetrasaccharide acceptor 27 followed by deprotection，respectively．

Keywords oligosaccharide，trichloroacetimidate，regio－and stereoselective synthesis

Introduction

Polysaccharides with antitumor activity separated from fungi such as Ganoderma lucidum，Schizophyllum commune and Lentinus edodes have a β－$(1 \rightarrow 3)$－linked glucosyl backbone with β－（ $1 \rightarrow 6$ ）－branched glucosyl side chains．${ }^{1}$ Recent studies revealed that $\alpha-(1 \rightarrow 3)$－ linked glucans also exist in some medically important fungi such as Cryphonectrini parasitica and Ganoderma lucidum．${ }^{2}$ It was also reported that only higher molecu－ lar－weight fractions（ $M_{\mathrm{W}}>16,000$ ）obtained from par－ tial hydrolysis of lentinan with formic acid showed an－ titumor activity．${ }^{3}$ However，an interesting result in our research revealed ${ }^{4}$ that a synthetic hexasaccharide \mathbf{I} ， β－D－Glc $p-(1 \rightarrow 3)$－［ β－D－Glc $p-(1 \rightarrow 6)-] \alpha-D$－Glc $p-(1 \rightarrow 3)$－ β－D－Glc $p-(1 \rightarrow 3)-[\beta$－$D$－Glc $p-(1 \rightarrow 6)-] D$－Glc p ，in combi－ nation with the chemotherapeutic agent cyclophosph－ amide（CPA），at a dose of 0.5 to $1 \mathrm{mg} / \mathrm{kg}$ substantially increased the inhibition of S_{180} for CPA，but decreased the toxicity caused by CPA．This inspired us to carry out more research regarding the structure function relation－ ships of oligosaccharides．It was reported that 3，6－man－ nosylated glucans have antitumor activity．${ }^{5}$ We present herein the synthesis of two analogues of \mathbf{I} containing mannose residue in the $(1 \rightarrow 3)$－linked backbone．

Results and discussion

As outlined in the Scheme 1，replacement of the 2nd glucose residue of the upstream end of the $(1 \rightarrow 3)$－linked backbone of \mathbf{I} with mannose was carried out to obtain a hexsaose 18 and methyl heptaoside 29 respectively．A co－used trisaccharide donor 9 was synthesized in a con－ cise way．Thus 4，6－O－benzylidene－1，2－O－ethylidene－β－ D－mannopyranose（2）${ }^{6}$ was used as the starting material．

Condensation of $\mathbf{2}$ with perbenzoylated glucosyl tri－ chloroacetimidate ${ }^{7} \mathbf{1}$ afforded the disaccharide $\mathbf{3}$ in sat－ isfactory yield (80%) ．Selective removal of the $4,6-O-$ benzylidene group of 3 with $1: 1000 \mathrm{AcCl}-\mathrm{MeOH}$ smoothly offered the disaccharide acceptor 4 （ 88% ）， subsequent coupling of $\mathbf{4}$ with $\mathbf{1}$ selectively gave the $(1 \rightarrow 6)$－linked trisaccharide 5 （87\％）．Trisaccharide tri－ chloroacetimidate 9 was obtained by deethylidenation of 5 with $90 \% \mathrm{CF}_{3} \mathrm{COOH}-\mathrm{H}_{2} \mathrm{O}$ ，acetylation，selective 1－O－ deacetylation，and subsequent trichloroacetimidation （65\％for four steps）．The ${ }^{1} \mathrm{H}$ NMR spectrum of 9 showed a characteristic signal at $\delta 5.13$ with $J_{3,}=J_{4,5}=$ 9.7 Hz for H－4，confirming the C－6－glycosylation of 4 ． The trisaccharide acceptor $\mathbf{1 6}$ was prepared as follows． Coupling of $3-O$－allyl－2，4，6－tri－O－benzoyl－α－D－gluco－ pyranosyl trichloroacetimidate $(\mathbf{1 0})^{8}$ with $1,2: 5,6$－di－ O－isopropylidene－α－D－glucofuranose（11）furnished di－ saccharide 12 （82\％）．Removal of 5，6－O－isopropyl－ idene group of $\mathbf{1 2}$ with $90 \% \mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$（90\％），fol－ lowed by selective $6-O$－glucosylation with 1 （ 83% ）， acetylaton，and then deallylation（91\％）yielded 16．For preparation of the tetrasaccharide acceptor 27，trisac－ charide 14 was hydrolyzed to remove the $1,2-O$－iso－ propylidene group giving the hemiacetal 19．Subsequent acetylation，selective $1-O$－deacetylation，and trichloro－ acrtimidation yielded the trisaccharide donor 22 （62\％， for four steps from 14）．Coupling of 22 with methyl 4，6－O－benzylidene－α－D－glucopyranoside（23）${ }^{9}$ produced the tetrasaccharide 24 （70\％）．Debenzylidenation of 24， followed by acetylation and deallylation gave tetra－ saccharide acceptor 27 （ 72% ，for three steps）．Com－ pared to $\mathbf{2 4}$ ，the ${ }^{1} \mathrm{H}$ NMR spectrum of 27 clearly showed a new signal at $\delta 4.76$ with $J_{1,2}=3.6, J_{2,3}=9.6 \mathrm{~Hz}$ for $\mathrm{H}-2$ ，confirming the $3-\mathrm{O}$－selective glycosylation of $\mathbf{2 3}$ ．

[^0]
Scheme 1

d $19 \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{OH}$
b ($24 \mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{O}_{2} \mathrm{CHPh}, \mathrm{R}^{4}=\mathrm{OH}, \mathrm{R}^{5}=\mathrm{OAll}$

$$
20 R^{1}=O A c, R^{2}, R^{3}=H, O A c
$$

$$
21 \mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{OH}
$$

$$
d 25 R^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OH}, \mathrm{R}^{5}=\mathrm{OAll}
$$

$$
f\left(\begin{array}{l}
21 R^{\prime}=O A C, R^{2}, R^{2}=H, O H \\
22 R^{1}=O A c, R^{2}=H, R^{3}=O C(N H) C l l_{3}
\end{array}\right.
$$

$$
h\left(\begin{array}{l}
26 R^{1}=R^{2}=R^{3}=R^{4}=O A c, R^{5}=O A l l \\
27 R^{1}=R^{2}=R^{3}=R^{4}=O A c, R^{5}=O H
\end{array}\right.
$$

Conditions and reagents: a: TMSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-15{ }^{\circ} \mathrm{C}$ to r.t.; b: $\mathrm{MeOH}, \mathrm{CH}_{3} \mathrm{COCl}$, r.t.; c: $90 \% \mathrm{CF}_{3} \mathrm{COOH}-\mathrm{H}_{2} \mathrm{O}, 30{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; d: $\mathrm{Ac} \mathrm{C}_{2} \mathrm{O}$, pyridine, r.t., 12 h ; e: THF, $\mathrm{MeOH}, \mathrm{NH}_{3}$, r.t.; f: $\mathrm{CCl}_{3} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DBU , r.t.; g: $90 \% \mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}, 40{ }^{\circ} \mathrm{C}, 8 \mathrm{~h} ; \mathrm{h}: \mathrm{PdCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}^{2}$, r.t.; i: $\mathrm{MeOH}, \mathrm{NH}_{3}$, r.t., two weeks.

With the trisaccharide donor 9, trisaccharide acceptor 16, and tetrasaccharide acceptor 27 at hand, the target hexaose and heptaoside were readily pepared. Thus, condensation of 16 with 9 followed by deprotection gave the hexaose 18, while coupling of 27 with 9 followed by deprotection afforded the heptaoside 29.

The bioassay of $\mathbf{1 8}$ and $\mathbf{2 9}$ is in progress and the results will be reported in due course.

Experimental

General methods

Optical rotations were determined at $25{ }^{\circ} \mathrm{C}$ with a Perkin-Elmer Model 241-Mc automatic polarimeter. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker ARX 400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100$ MHz for ${ }^{13} \mathrm{C}$) at $25{ }^{\circ} \mathrm{C}$ for solutions in CDCl_{3} or $\mathrm{D}_{2} \mathrm{O}$ as indicated. Mass spectra were recorded with a VG PLATFORM mass spectrometer using the ESI mode. Thin-layer chromatography (TLC) was performed on silica gel HF_{254} with detection by charring with 30% $(V: V) \mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH or in some cases by a UV lamp. Column chromatography was conducted by elution of a column ($16 \mathrm{~mm} \times 240 \mathrm{~mm}, 18 \mathrm{~mm} \times 300 \mathrm{~mm}, 35 \mathrm{~mm} \times$ 400 mm) of silica gel ($100-200$ mesh) with EtOAcpetroleum ether ($60-90{ }^{\circ} \mathrm{C}$) as the eluent. Solutions were concentrated at $<60{ }^{\circ} \mathrm{C}$ under reduced pressure.

2,3,4,6-Tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 3$)-1,2- O-ethylidene-4,6- O-benzylidene- β - D-mannopyra nose (3)

To a cooled solution $\left(0{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1}(3.75 \mathrm{~g}, 5.1 \mathrm{mmol})$ and $2(1.36 \mathrm{~g}, 4.6 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added TMSOTf ($20 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$). The mixture was stirred for 2 h , during which time the temperature was gradually raised to ambient temperature. The mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ (4 drops) and then evaporated to give a residue, which was purified by silica gel column chromatography with $2: 1$ petroleum etherEtOAc as the eluent to give diasaccharide 3 (3.21 g , $80 \%)$ as a foamy solid. $[\alpha]_{\mathrm{D}}-39.7\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.98-7.25(\mathrm{~m}, 25 \mathrm{H}, 4$ Bz-H, Ph-H), 5.88 (dd, $\left.1 \mathrm{H}, J_{3,4}=J_{4,5}=9.5 \mathrm{~Hz}, \mathrm{H}-4\right)^{\prime}$), $\left.5.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=J_{3,4}=9.5 \mathrm{~Hz}, \mathrm{H}-3\right)^{\prime}\right) 5.60(\mathrm{dd}, 1 \mathrm{H}$, $\left.\left.J_{1,2}=8.0 \mathrm{~Hz}, J_{2,3}=9.5 \mathrm{~Hz}, \mathrm{H}-2\right)^{\prime}\right), 5.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH})$, $5.13\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1\right)$), $5.12\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=2.0\right.$ $\mathrm{Hz}, \mathrm{H}-1), 4.73$ (q, 1H, $J=3.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}$), 4.56 (dd, $\left.1 \mathrm{H}, J_{5,6}=3.5 \mathrm{~Hz}, J_{6^{\prime}, 6^{\prime} \mathrm{a}}=12.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{e}\right), 4.42(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{5,6}=4.2 \mathrm{~Hz}, J_{6 ' \mathrm{a}, 6^{\prime} \mathrm{e}}=12.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.09-4.00(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-5{ }^{\prime}$), 4.25 (dd, $1 \mathrm{H}, J_{5,6}=5.1 \mathrm{~Hz}, J_{6 \mathrm{e}, 6 \mathrm{a}}=10.6$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{e}), 4.21\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=4.2 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{e}}=10.6 \mathrm{~Hz}\right.$, $\mathrm{H}-6 \mathrm{a}), 3.74$ (dd, $\left.1 \mathrm{H}, J_{2,3}=J_{3,4}=10.3 \mathrm{~Hz}, \mathrm{H}-3\right), 3.31$ (ddd, $1 \mathrm{H}, J_{4,5}=10.3 \mathrm{~Hz}, J_{5,6}=5.1 \mathrm{~Hz}, J_{5,6}=4.2 \mathrm{~Hz}$, $\mathrm{H}-5), 1.25$ (d, $3 \mathrm{H}, J=4.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}$). Anal. calcd for $\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{O}_{15}$: C 67.43, H 5.08; found C 67.38, H 5.09.

2,3,4,6-Tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 3$)-1,2-O-ethylidene- β - D-mannopyranose (4)

Acetyl chloride $(0.1 \mathrm{~mL})$ was added to a solution of
$3(8.73 \mathrm{~g}, 10.0 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(100 \mathrm{~mL})$. The solution was stoppered in a flask and stirred at room temperature until TLC (petroleum ether-EtOAc, $2: 1, V: V$) showed that the starting material disappeared. The solution was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$, then concentrated to dryness. The residue was purified by chromatography with petroleum ether-EtOAc (1:2, $V: V)$ as the eluent to give $4(6.90 \mathrm{~g}, 88 \%)$ as a foamy solid. $[\alpha]_{\mathrm{D}}-49.7\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 8.07-7.26(\mathrm{~m}, 20 \mathrm{H}, 4 \times \mathrm{Bz}-\mathrm{H}), 5.95$ (dd, $\left.J_{3,4}=J_{4,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 5.64\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.58 (dd, $J_{1,2}=7.9 \mathrm{~Hz}, J_{2,3}=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2$ '), 5.12 (d, $J_{1,2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.01 (d, $J_{1,2}=7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.77 (dd, $J_{2,3}=2.2 \mathrm{~Hz}, J_{3,4}=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 4.72\left(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 4.40\left(\mathrm{dd}, J_{5,6}=\right.$ $6.3 \mathrm{~Hz}, J_{6^{\prime}, 6^{\prime} \mathrm{a}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 6^{\prime} \mathrm{e}$), 4.23 (ddd, $J_{4,5}=9.7$ $\mathrm{Hz}, J_{5,6}=6.3 \mathrm{~Hz}, J_{5,6}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 '$), 3.92 (dd, $\left.J_{3,4}=J_{4,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.88-3.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2$, $2 \mathrm{H}-6), 3.72\left(\mathrm{dd}, J_{5,6}=5.6 \mathrm{~Hz}, J_{6^{\prime} \mathrm{a}, 6^{\mathrm{e}}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-6'a), 3.29 (ddd, $J_{4,5}=9.7 \mathrm{~Hz}, J_{5,6}=5.1 \mathrm{~Hz}, J_{5,6}=3.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.26$ (d, $\left.J=4.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right)$. Anal. calcd for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{O}_{15}$: C 64.28, H 5.14; found C $64.20, \mathrm{H}$ 5.23 .

2,3,4,6-Tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 3$)-[2,3,4,6-tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 6$)-] 1,2-O-ethylidene- β - D-mannopyranose (5)

Acceptor $4(3.93 \mathrm{~g}, 5 \mathrm{mmol})$ and donor $1(3.7 \mathrm{~g}, 5$ $\mathrm{mmol})$ were coupled in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ in the presence of TMSOTf ($50 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) under the same condition as described for the synthesis of $\mathbf{3}$ by coupling of 2 with 1. Purification by chromatography with petroleum ether- $\operatorname{EtOAc}(2: 1, V: V)$ as the eluent gave trisaccharide $5(5.93 \mathrm{~g}, 87 \%)$. $[\alpha]_{\mathrm{D}}+10.3$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.94-7.25(\mathrm{~m}$, $40 \mathrm{H}, 8 \mathrm{Bz}-\mathrm{H}$), 5.91 (dd, $\left.J_{3,4}=J_{4,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right)$, $5.86\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.64\left(\mathrm{dd}, J_{2,3}=\right.$ $\left.J_{3,4}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.60\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-3), 5.52$ (dd, $J_{1,2}=7.6 \mathrm{~Hz}, J_{2,3}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.48 (dd, $\left.J_{1,2}=8.0 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.93(\mathrm{~d}$, $\left.J_{1,2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.88$ (d, $J_{1,2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.84\left(\mathrm{~d}, J_{1,2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.71\left(\mathrm{dd}, J_{5,6}=2.6 \mathrm{~Hz}\right.$, $\left.J_{6,6 \mathrm{a}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{e}\right), 4.66(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 4.61\left(\mathrm{dd}, J_{5,6}=3.1 \mathrm{~Hz}, J_{6,6 \mathrm{e}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-6 \mathrm{a}$), 4.46 (dd, $J_{5,6}=5.1 \mathrm{~Hz}, J_{6,6 \mathrm{e}}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 4.36 (dd, $J_{5,6}=6.4 \mathrm{~Hz}, J_{6,6 \mathrm{a}}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{e}$), 4.19 $-4.05(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}-5, \mathrm{H}-4), 3.77-3.58(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2$, $\mathrm{H}-3,2 \times \mathrm{H}-6), 3.30$ (ddd, $J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=6.8 \mathrm{~Hz}$, $\left.J_{5,6}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 1.24(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}$). Anal. calcd for $\mathrm{C}_{76} \mathrm{H}_{66} \mathrm{O}_{24}$: C 66.96, H 4.88; found C 66.75, H, 4.99.

2,3,4,6-Tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 3$)-[2,3,4,6-tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 6$)-] 2,4-di- O-acetyl- α - D-mannopyranosyl trichloroacetimidate (9)

Compound $5(5.45 \mathrm{~g}, 4.0 \mathrm{mmol})$ was dissolved in 70 mL of 90% TFA and stirred for 2 h , at the end of which time the reaction mixture was poured directly to 250 mL
of toluene and concentrated. Drying the residue under high vacuum gave a white foamy solid. The foamy solid was dissolved in pyridine (20 mL), and then $\mathrm{Ac}_{2} \mathrm{O}$ (10 mL) was added. The reaction mixture was stirred at room temperature for 12 h , and TLC (petroleum ether-EtOAc, $1: 1, V: V$) indicated that the reaction was complete. The reaction mixture was concentrated to dryness. The resultant crude product 7 was dissolved in $1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ solution of ammonia-methanol (200 mL) and stirred at room temperature for 3 h , at the end of which time TLC (petroleum ether-EtOAc, $1: 1, V: V$) indicated that the reaction was complete. The solution was concentrated to give compound $\mathbf{8}$ as a syrup. A mixture of $\mathbf{8}$, trichloroacetonitrile ($4.2 \mathrm{~mL}, 20 \mathrm{mmol}$), and 1,8-diazabicyclo[5.4.0]undecene (DBU) $(0.50 \mathrm{~mL}, 4.04$ mmol) in dry dichloromethane (50 mL) was stirred under nitrogen protection for 3 h and then concentrated. The residue was purified by flash chromatography with petroleum ether-EtOAc $(2: 1, V: V)$ as the eluent to give $9(4.07 \mathrm{~g}, 65 \%$ for four steps) as a foamy solid. $[\alpha]_{\mathrm{D}}+14.3\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 8.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CNHCCl}_{3}\right), 8.00-7.26(\mathrm{~m}, 40 \mathrm{H}, 8 \times$ Bz-H), 6.02 (d, $\left.J_{1,2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.87-5.82(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{H}-4), 5.66\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $5.64\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.48\left(\mathrm{dd}, J_{1,2}=\right.$ $\left.7.7 \mathrm{~Hz}, J_{2,3}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.64\left(\mathrm{dd}, J_{1,2}=7.7 \mathrm{~Hz}\right.$, $\left.J_{2,3}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.24\left(\mathrm{dd}, J_{1,2}=2.8 \mathrm{~Hz}, J_{2,3}=3.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.13 (dd, $\left.J_{3,4}=J_{4,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right)$, 4.93 (d, $\left.J_{1,2}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.90\left(\mathrm{~d}, J_{1,2}=7.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-1), 4.64-4.42$ (m, 4H, $2 \times \mathrm{H}-6 \mathrm{e}, 2 \times \mathrm{H}-6 \mathrm{a}$), 4.26 $\left(\mathrm{dd}, J_{2,3}=3.4 \mathrm{~Hz}, J_{3,4}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.16-4.89$ (m, $4 \mathrm{H}, 2 \times \mathrm{H}-5,2 \times \mathrm{H}-6$), 3.68 (ddd, $J_{4,5}=9.7 \mathrm{~Hz}$, $\left.J_{5,6}=5.8 \mathrm{~Hz}, J_{5,6}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 1.96(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}$), 1.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$). Anal. calcd for $\mathrm{C}_{80} \mathrm{H}_{68} \mathrm{Cl}_{3} \mathrm{NO}_{26}$: C 61.37, H 4.38; found C 61.18, H, 4.35 .

3- O-Allyl-2,4,6-tri- O-benzoyl- β - D-glucopyranosyl($1 \rightarrow 3$)-1,2: 5,6-di- O-isopropylidene- α - D-glucofuranose (12)

Compounds $\mathbf{1 0}$ ($3.38 \mathrm{~g}, 5 \mathrm{mmol}$) and $\mathbf{1 1}(1.18 \mathrm{~g}, 4.55$ mmol) were coupled in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ in the presence of TMSOTf ($50 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) under the same condition as described for the synthesis of $\mathbf{3}$ by coupling of 2 with 1 . Purification by chromatography with petroleum ether- $\operatorname{EtOAc}(3: 1, V: V)$ as the eluent gave disaccharide $12(2.89 \mathrm{~g}, 82 \%) .[\alpha]_{\mathrm{D}}+32.2(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 8.09-7.26(\mathrm{~m}$, $15 \mathrm{H}, 3 \times \mathrm{Bz}-\mathrm{H}), 5.57-5.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}\right)$, $5.54\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 5.46\left(\mathrm{~d}, J_{1,2}=\right.$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.30\left(\mathrm{dd}, J_{1,2}=7.8 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 5.06 (dd, $J=1.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$ CHH), 4.95 (dd, $J=1.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}$), $4.80\left(\mathrm{~d}, J_{1,2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.71\left(\mathrm{ddd}, J_{4,5}=9.6 \mathrm{~Hz}\right.$, $\left.J_{5,6 \mathrm{e}}=6.9 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 4.44\left(\mathrm{dd}, J_{3,4}=\right.$ $\left.J_{4,5}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.38\left(\mathrm{dd}, J_{2,3}=J_{3,4}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-3), 4.36-4.21 (m, 7H, CH2CH=CHH, H-2, H-3', H-5', H-6, H-6'), 4.13-3.92 (m, 2 H, H-6, H-6'), 1.41 (s , $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06(\mathrm{~s}$,
$3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. calcd for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{14}$: C 65.11, H 5.98; found C 65.07, H 5.91.

3- O-Allyl-2,4,6-tri- O-benzoyl- β - D-glucopyranosyl(1 $\boldsymbol{\rightarrow} \mathbf{3}$)-1,2-O-isopropylidene- α - D-glucofurannose (13)

Compound 12 ($3.87 \mathrm{~g}, 5 \mathrm{mmol}$) was added to 90% HOAc (50 mL), and the mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 8 h , at the end of which time TLC (petroleum ether-EtOAc, $2: 3, V: V$) indicated that the reaction was complete. The solvents were evaporated to give a residue, which was purified by silica gel column chromatography with $2: 3$ petroleum ether-EtOAc as the eluent to give diasaccharide $\mathbf{1 3}$ as a syrup ($3.30 \mathrm{~g}, 90 \%$). $[\alpha]_{\mathrm{D}}+0.00\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 8.20-7.31(\mathrm{~m}, 15 \mathrm{H}, 3 \times \mathrm{Bz}-\mathrm{H}), 5.60-5.57(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}\right), 5.52\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, $5.46\left(\mathrm{~d}, J_{1,2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)$, $5.30\left(\mathrm{dd}, J_{1,2}=9.1 \mathrm{~Hz}\right.$, $J_{2,3}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), $5.05(\mathrm{dd}, J=1.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}\right), 4.95\left(\mathrm{dd}, J=1.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right.$ $=\mathbf{C H H}), 4.83\left(\mathrm{~d}, J_{1,2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)^{\prime}$, $4.76\left(\mathrm{ddd}, J_{4,5}\right.$ $\left.=9.8 \mathrm{~Hz}, J_{5,6}=6.8 \mathrm{~Hz}, J_{5,6}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, $4.35-4.25$ (m , $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-3$), 4.17 (dd, $J_{1,2}=1.5 \mathrm{~Hz}$, $\left.J_{2,3}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.12\left(\mathrm{dd}, J_{5,6}=6.8 \mathrm{~Hz}, J_{6 \mathrm{e}, 6 \mathrm{a}}=\right.$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{e}), 4.10-3.86\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{CH}=\mathrm{CHH}, \mathrm{H}-3$ ', H-5', H-6'e), $3.80\left(\mathrm{dd}, J_{5,6}=6.8 \mathrm{~Hz}\right.$, $\left.J_{6 \mathrm{a}, 6 \mathrm{e}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.63\left(\mathrm{dd}, J_{5,6}=6.1 \mathrm{~Hz}, J_{6,6 \mathrm{e}^{\prime}}=\right.$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.18 (s, 3H, CH_{3}). Anal. calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{O}_{14}$: C 63.75, H 5.76; found C63.70, H, 5.71.

2,4,6-Tri- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 3$)-[2,3, 4,6-tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 6$)]-5- O -acetyl-1,2- O-isopropylidene- α - D-glucofuranose (16)

Coupling of $\mathbf{1 3}(2.56 \mathrm{~g}, 3.5 \mathrm{mmol})$ with $\mathbf{1}(2.85 \mathrm{~g}$, $3.85 \mathrm{mmol})$ in the presence of catalytic TMSOTf ($35 \mu \mathrm{~L}$, 0.20 mmol) was carried out under the same conditions as described for the synthesis of $\mathbf{3}$ by coupling of $\mathbf{2}$ with 1. Purification by a flash chromatography with petroleum ether-EtOAc $(2: 1, V: V)$ as the eluent gave compound 14 ($3.82 \mathrm{~g}, 83 \%$). Compound 14 was dissolved in pyridine (20 mL), and then $\mathrm{Ac}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 12 h , and TLC (petroleum ether-EtOAc, $4: 1, V: V$) indicated that the reaction was complete. The reaction mixture was concentrated to dryness, which was purified by chromatography with petroleum ether-EtOAc $(2: 1, V: V)$ as the eluent to give triasaccharide 15. To a solution of $15(3.79 \mathrm{~g}, 2.8 \mathrm{mmol})$ in methanol (100 mL) was added $\mathrm{PdCl}_{2}(60 \mathrm{mg}, 0.34$ mmol) and the mixture was stirred at room temperature for 2 h , at the end of which time TLC (petroleum ether-EtOAc, $2: 1, V: V$) indicated that the reaction was complete. The mixture was filtered, the filter cake was washed with dichloromethane, and the combined filtrate and washings were concentrated. Purification by chromatography with $2: 1$ petroleum ether-EtOAc as the eluent afforded compound $16(3.3 \mathrm{~g}, 91 \%)$ as a foamy solid. $[\alpha]_{\mathrm{D}}-8.2\left(c, 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400
$\mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.10-7.21(\mathrm{~m}, 35 \mathrm{H}, 7 \times \mathrm{Bz}-\mathrm{H}), 5.85$ (dd, $\left.J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.70\left(\mathrm{dd}, J_{3,4}=J_{4,5}=\right.$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.50\left(\mathrm{dd}, J_{1,2}=8.0 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2), 5.40\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.30(\mathrm{~d}$, $\left.J_{1,2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.21-5.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-5)$, 4.87 (d, $\left.J_{1,2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.82-4.75$ (m, 2H, H-1, $\mathrm{H}-4), 4.56$ (dd, $J_{5,6}=2.9 \mathrm{~Hz}, J_{6,6 \mathrm{a}}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{e}$), 4.44-4.35 (m, 4H, H-2, H-3, $2 \times \mathrm{H}-6$), 4.27 (dd, $J_{5,6}=$ $\left.3.2 \mathrm{~Hz}, J_{6,6 \mathrm{a}}=11.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{e}\right), 4.17-4.02$ (m, $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$), 3.99 (ddd, $J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=5.3 \mathrm{~Hz}$, $\left.J_{5,6}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.78\left(\mathrm{dd}, J_{5,6}=5.3 \mathrm{~Hz}, J_{6,6 \mathrm{e}}=\right.$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 1.30 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), 1.15 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. calcd for $\mathrm{C}_{72} \mathrm{H}_{66} \mathrm{O}_{24}$: C 65.75, H 5.06; found C 65.55 , H 5.12.

2,3,4,6-Tetra- O-benzoyl- β - \boldsymbol{D}-glucopyranosyl-($1 \rightarrow 3$)-[2,3,4,6-tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 6$)-] 2,4-di- O-acetyl- α - D-mannopyranosyl-($1 \rightarrow 3$)-2,4,6-tri- O-bezoyl- β - D-glucopyranosyl- $(1 \rightarrow 3)$ - $[2,3,4,6-$ tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 6$)-]5- O -acetyl-1,2-O-isopropylidene- α - D-glucofuranose (17)

Coupling of 16 ($158 \mathrm{mg}, 0.12 \mathrm{mmol}$) with 9 (203 mg , 0.13 mmol) in the presence of catalytic TMSOTf ($5 \mu \mathrm{~L}$, 0.028 mmol) was carried out under the same conditions as described for the synthesis of $\mathbf{3}$ by coupling of $\mathbf{2}$ with 1. Purification by a chromatography with petroleum ether-EtOAc $(1: 1, V: V)$ as the eluent gave hexasaccharide $17(261 \mathrm{mg}, 80 \%) .[\alpha]_{\mathrm{D}}+12.6\left(c, 1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 8.21-7.22(\mathrm{~m}, 75 \mathrm{H}$, $15 \times$ Bz-H), $5.85\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.84$ (dd, $\left.J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.73\left(\mathrm{dd}, J_{3,4}=J_{4,5}=\right.$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.68\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right)$, $5.63\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.60\left(\mathrm{dd}, J_{1,2}=\right.$ $\left.7.8 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.55$ (dd, $J_{1,2}=7.8 \mathrm{~Hz}$, $\left.J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.50\left(\mathrm{dd}, J_{1,2}=7.8 \mathrm{~Hz}, J_{2,3}=9.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.35\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $5.30\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.19\left(\mathrm{dd}, J_{1,2}=\right.$ $\left.7.8 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.19$ (ddd, $J_{4,5}=9.6 \mathrm{~Hz}$, $\left.J_{5,6}=6.8 \mathrm{~Hz}, J_{5,6}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 5.05\left(\mathrm{~d}, J_{1,2}=3.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.88$ (d, $J_{1,2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.78-$ 4.67 ($\mathrm{m}, 6 \mathrm{H}, 2 \times \mathrm{H}-1,2 \times \mathrm{H}-4,2 \times \mathrm{H}-6$), $4.64-4.53$ (m, $4 \mathrm{H}, 2 \times \mathrm{H}-1,2 \times \mathrm{H}-6), 4.50-4.41(\mathrm{~m}, 5 \mathrm{H}, 2 \times \mathrm{H}-2, \mathrm{H}-3$, $2 \times \mathrm{H}-6), 4.29-4.16(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-5,2 \times \mathrm{H}-6)$, $4.14-4.00(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}-3, \mathrm{H}-5), 3.94$ (dd, $J_{5,6}=6.6$ $\left.\mathrm{Hz}, J_{6,6 \mathrm{a}}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{e}\right), 3.85-3.76$ (m, 2H, H-5, H-6), 3.63-3.55 (m, 2H, H-5, H-6), 3.26 (dd, $J_{5,6}=6.4$ $\left.\mathrm{Hz}, J_{6,6 \mathrm{e}}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.20(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right), 0.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta: 169.3\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{CO}\right), 168.7\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3} \mathrm{CO}\right)$, $165.7,165.6,165.3,165.2,165.16,165.13,164.7,164.6$, $164.5,164.4,163.9$ ($17 \mathrm{C}, 14 \times \mathrm{PhCO}$, some signals overlapped), $133.0-132.5,129.6-128.8,128.6-$ 127.7 ($\mathbf{P h C O}$), 111.7 ($\mathrm{Me}_{2} \mathbf{C}$), 104.4, 100.6, 100.6, 98.6, 97.6, 97.0, (6C, $6 \times \mathrm{C}-1), 72.9,72.6,72.5,72.3,71.8$, 71.7, 71.6, 71.5, 71.4, 71.1, 70.8, 70.7, 69.3, 69.2, 68.8, $68.5,67.6,67.4,65.1,62.7,62.6,62.4,62.2,59.9$ (C-2 -C-6), 26.2, $25.7\left(2 \mathrm{C}, 2 \times \mathrm{CCH}_{3}\right), 20.0,19.8,18.6(3 \mathrm{C}$, $3 \times \mathrm{COCH}_{3}$). Anal. calcd for $\mathrm{C}_{150} \mathrm{H}_{132} \mathrm{O}_{49}: \mathrm{C} 66.27, \mathrm{H}$
4.89; found C 66.02, H, 4.77.
β-D-Glucopyranosyl-($1 \rightarrow 3$)-[β - D-glucopyranosyl$(1 \rightarrow 6)$-] α - D-mannopyranosyl-($1 \rightarrow 3$)- β - D-glucopyra-nosyl-($1 \rightarrow 3$)-[β-D-glucopyranosyl-($1 \rightarrow 6$)-] $\beta-D$ glucopyranose (18)

The solution of $\mathbf{1 7}$ ($272 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 10 mL of 90% TFA was stirred for 2 h , at the end of which time the reaction mixture was poured directly to 250 mL of toluene and concentrated. Drying the residue under high vacuum gave a white foamy solid. The foamy solid was dissolved in a saturated solution of ammonia in MeOH $(10 \mathrm{~mL})$. After two weeks at room temperature, the reaction solution was concentrated, and the residue was purified on a Biogel P2 column with MeOH -water as the eluent to afford $\mathbf{1 8}$ ($79 \mathrm{mg}, 80 \%$ for two steps) as a foamy solid. $[\alpha]_{\mathrm{D}}-12.2\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$, $400 \mathrm{MHz}) \delta: 5.16\left(\mathrm{~d}, J_{1,2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.73(\mathrm{~d}$, $\left.J_{1,2}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.70\left(\mathrm{~d}, J_{1,2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)$, $4.53\left(\mathrm{~d}, J_{1,2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.41\left(\mathrm{~d}, J_{1,2}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-1), 4.39$ (d, $J_{1,2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.18-3.20$ (m, $36 \mathrm{H}, \mathrm{H}-2-\mathrm{H}-6) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 100 \mathrm{MHz}\right) \delta$: 105.2, 105.2, 105.1, 103.0, 102.8, $102.8\left(J_{\mathrm{C}-1, \mathrm{H}-1}=160.0\right.$, $160.0,160.0,162.4,162.4$, and 176.0 Hz respectively, $6 \times \mathrm{C}-1), 82.6,79.0,78.4,78.3,78.0,77.2,75.5,75.3$, $75.2,72.4,72.3,72.2,70.2,67.3,63.1,62.9$ (C-2-C-6). Anal. calcd for $\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{31}$: C 43.64, H 6.31; found C 43.43, H, 6.18.

3- O-Allyl-2,4,6-tri- O-benzoyl- β - D-glucopyranosyl$(1 \rightarrow 3)$-[2,3,4,6-tetra- O-benzoyl- $\boldsymbol{\beta}$ - D-glucopyranosyl$(1 \rightarrow 6)$-]2,4-di- O-acetyl- α-D-glucopyranosyl trichloroacetimidate (22)

Compound 14 ($341 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in 35 mL of 90% TFA and stirred for 2 h , at the end of which time the reaction mixture was poured directly to 100 mL of toluene and concentrated. Drying the residue under high vacuum gave 19 as a white foamy solid. This foamy solid was dissolved in pyridine (10 mL), and then $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 12 h , and TLC (petroleum ether-EtOAc, $2: 1, V: V$) indicated that the reaction was complete. The reaction mixture was concentrated to dryness. The resultant crude product 20 was dissolved in $1 \mathrm{~mol} / \mathrm{L}$ solution of ammonia-methanol $(100 \mathrm{~mL})$ and stirred at room temperature for 3 h , at the end of which time TLC (petroleum ether-EtOAc, $1: 1$, $V: V$) indicated that the reaction was complete. The solution was concentrated to give compound 21 as a syrup. A mixture of 21, trichloroacetonitrile ($0.4 \mathrm{~mL}, 2$ mmol), and 1,8 - diazabicyclo [5.4.0] undecene (DBU) $(0.05 \mathrm{~mL}, 0.4 \mathrm{mmol})$ in dry dichloromethane (10 mL) was stirred for 3 h and then concentrated. The residue was purified by flash chromatography with $2: 1$ petroleum ether-EtOAc as the eluent to give 22 (242 mg , 62% for four steps) as a foamy solid. $[\alpha]_{\mathrm{D}}+15.6$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 8.30(\mathrm{~s}, 1 \mathrm{H}$, NHCCl_{3}), $8.15-7.13(\mathrm{~m}, 35 \mathrm{H}, 7 \times \mathrm{Bz}-\mathrm{H}), 6.18$ (d, $\left.J_{1,2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.84\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$,

H-4), 5.61 (dd, $\left.J_{3,4}=J_{4,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.56-5.51$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}\right), 5.46\left(\mathrm{dd}, J_{1,2}=8.0 \mathrm{~Hz}, J_{2,3}=\right.$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.42\left(\mathrm{dd}, J_{2,3}=J_{3,4}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, 5.17 (dd, $\left.J_{3,4}=J_{4,5}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.99(\mathrm{dd}, J=1.4$, $\left.17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}\right), 4.95\left(\mathrm{~s}, J_{1,2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1), 4.89$ (dd, $J=1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}$), 4.85 ($\mathrm{s}, J_{1,2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.83 (dd, $J_{1,2}=7.8 \mathrm{~Hz}$, $J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.63 (dd, $J_{1,2}=3.5 \mathrm{~Hz}, J_{2,3}=9.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.65-4.57$ (m, 2H, $2 \times \mathrm{H}-6$), 4.47 (dd, $\left.J_{5,6}=5.7 \mathrm{~Hz}, J_{6,6 \mathrm{a}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{e}\right), 4.32\left(\mathrm{dd}, J_{5,6}=\right.$ $\left.6.2 \mathrm{~Hz}, J_{6,6 \mathrm{e}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 4.16-3.88(\mathrm{~m}, 8 \mathrm{H}$, $2 \times \mathrm{H}-3,2 \times \mathrm{H}-5,2 \times \mathrm{H}-6, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}$), 3.67 (ddd, $\left.J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=6.2 \mathrm{~Hz}, J_{5,6}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.00$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 1.81 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$). Anal. calcd for $\mathrm{C}_{76} \mathrm{H}_{68}-\mathrm{Cl}_{3} \mathrm{NO}_{25}$: C $60.79, \mathrm{H} 4.56$; found $\mathrm{C} 60.53, \mathrm{H}$ 4.64.

Methyl 3- O-allyl-2,4,6-tri- O-benzoyl- β - D-glucopy-ransyl-($1 \rightarrow 3$)-[2,3,4,6-tetra- O-benzoyl- β - D-glucopy-ranosyl-($1 \rightarrow 6$)-] 2,4-di- O-acetyl- β - D-glucopy-ranosyl-($1 \rightarrow 3$)-4,6-O-benzylidene- $\alpha-D$-glucopyranoside (24)

Coupling of 22 ($346 \mathrm{mg}, 0.23 \mathrm{mmol}$) with $\mathbf{2 3}$ (59 mg , $0.21 \mathrm{mmol})$ in the presence of catalytic TMSOTf $(10 \mu \mathrm{~L}$, 0.056 mmol) was carried out under the same conditions as described for the synthesis of $\mathbf{3}$ by coupling of $\mathbf{2}$ with 1. Purification by a chromatography with $3: 2$ petroleum ether-EtOAc as the eluent gave tetrasaccharide 24 (238 $\mathrm{mg}, 70 \%) .[\alpha]_{\mathrm{D}}+14.6\left(c, 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 8.11-7.22(\mathrm{~m}, 40 \mathrm{H}, 7 \times \mathrm{Bz}-\mathrm{H}, \mathrm{Ph}-\mathrm{H})$, 5.87 (dd, $\left.J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.64\left(\mathrm{dd}, J_{3,4}=\right.$ $\left.J_{4,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.59-5.44(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhCH}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}, 2 \times \mathrm{H}-2, \mathrm{H}-3\right), 5.11\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.98$ (dd, $J=1.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$ CHH), 4.93 (d, $\left.J_{1,2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.89(\mathrm{dd}, J=1.5$, $\left.10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}\right), 4.86\left(\mathrm{~d}, J_{1,2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1), 4.84\left(\mathrm{~d}, J_{1,2}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.62\left(\mathrm{~d}, J_{1,2}=3.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.72-4.63$ (m, 3H, H-2, $2 \times \mathrm{H}-6$), 4.56 (dd, $\left.J_{5,6}=5.9 \mathrm{~Hz}, J_{6 \mathrm{ee}, 6 \mathrm{a}}=12.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{a}\right), 4.46-$ 4.38 (m, 4H, $4 \times \mathrm{H}-6$), $4.19-3.42(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}-2,3 \times$ $\left.\mathrm{H}-3, \mathrm{H}-4,4 \times \mathrm{H}-5, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}\right), 3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right)$, 1.93 (s, 3H, CH3CO), 1.86 (s, 3H, CH3CO). Anal. calcd for $\mathrm{C}_{88} \mathrm{H}_{84} \mathrm{O}_{30}$: C 65.18, H 5.22; found C $65.44, \mathrm{H}, 5.10$.

Methyl 2,4,6-tri- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow$ 3)-[2,3,4,6-tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow$ 6)-]2,4-di- O-acetyl- β - D-glucopyranosyl-($1 \rightarrow 3$)-2,4,6-tri- O-acetyl- α - D-glucopyranoside (27)

To a solution of 24 ($178 \mathrm{mg}, 0.11 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(100 \mathrm{~mL})$ was added acetyl chloride $(0.1$ mL). The flask was stoppered and the solution was stirred at room temperature until TLC (EtOAc) showed that the starting material disappeared. The solution was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$, then concentrated to dryness. The residue was purified by chromatography with petroleum ether-EtOAc $(1: 2, V: V)$ as the eluent to give $\mathbf{2 5}$ as a white solid. This white solid was dissolved in pyridine $(20 \mathrm{~mL})$, and then $\mathrm{Ac}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The reaction mixture was stirred at r.t. for 12 h , and TLC ($1: 1$
petroleum ether-EtOAc) indicated that the reaction was complete. The reaction mixture was concentrated to dryness, which was purified by chromatography with petroleum ether-EtOAc $(1: 1, V: V)$ as the eluent to give tetrasaccharide 26. To a solution of compound 26 in methanol (100 mL) was added PdCl_{2} ($30 \mathrm{mg}, 0.17$ mmol) and the mixture was stirred at room temperature for 2 h , at the end of which time TLC (petroleum ether-EtOAc, $1: 1, V: V$) indicated that the reaction was complete. The mixture was filtered, the filter cake was washed with dichloromethane, and the combined filtrate and washings were concentrated. Purification by column chromatography with petroleum ether-EtOAc ($1: 1, V: V$) as the eluent afforded compound 27 (128 $\mathrm{mg}, 72 \%$ for three steps) as a foamy solid. $[\alpha]_{\mathrm{D}}+24.5(c$, $1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.06-7.22$ $(\mathrm{m}, 35 \mathrm{H}, 7 \times \mathrm{Bz}-\mathrm{H}), 5.88\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-4), 5.65$ (dd, $\left.J_{3,4}=J_{4,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.48$ (dd, $\left.J_{1,2}=7.9 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.40\left(\mathrm{dd}, J_{2,3}=\right.$ $\left.J_{3,4}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.28\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-4), 5.05$ (dd, $J_{1,2}=7.9 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $4.95\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.89\left(\mathrm{~d}, J_{1,2}=7.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.77\left(\mathrm{dd}, J_{1,2}=7.9 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2), 4.76$ (dd, $J_{1,2}=3.6 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.73 (d, $\left.J_{1,2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.68$ (d, $J_{1,2}=3.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 4.65\left(\mathrm{dd}, J_{5,6}=3.4 \mathrm{~Hz}, J_{6 \mathrm{e}, 6 \mathrm{a}}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-6 \mathrm{e}), 4.60\left(\mathrm{dd}, J_{5,6}=3.4 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{e}}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-6a), 4.49-4.38 (m, 2H, $2 \times \mathrm{H}-6$), 4.34 (d, $J_{1,2}=7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.20\left(\mathrm{dd}, J_{5,6}=5.9 \mathrm{~Hz}, J_{6,6 \mathrm{a}}=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-6e), $4.17-3.53$ (m, 10H, $3 \times \mathrm{H}-3,4 \times \mathrm{H}-5,3 \times \mathrm{H}-6$), 3.20 (s, 3H, CH3O), 2.02 (s, 3H, CH3CO), 1.99 (s, 3H, $\mathrm{CH}_{3} \mathrm{CO}$), 1.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 1.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 1.87 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$). Anal. calcd for $\mathrm{C}_{84} \mathrm{H}_{82} \mathrm{O}_{33}: \mathrm{C}$ 62.30, H 5.10; found C 62.01, H, 5.23.

Methyl 2,3,4,6-tetra- O-benzoyl- β - \boldsymbol{D}-glucopyranosyl$(1 \rightarrow 3)-[2,3,4,6$-tetra- O-benzoyl- β - D-glucopyranosyl$(1 \rightarrow 6)$-] 2,4-di- O-acetyl- α - D-mannopyranosyl-($1 \rightarrow 3$)-2,4,6-tri-O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 3$)-[2,3, 4,6-tetra- O-benzoyl- β - D-glucopyranosyl-($1 \rightarrow 6$)-]2,4-di- O-acetyl- β - D-glucopyranosyl- $(1 \rightarrow 3)-2,4,6$-tri- O -acetyl- α - D-glucopyranoside (28)

Coupling of 27 ($110 \mathrm{mg}, 0.068 \mathrm{mmol}$) with 9 (125 $\mathrm{mg}, 0.08 \mathrm{mmol}$) in the presence of catalytic TMSOTf (5 $\mu \mathrm{L}, 0.028 \mathrm{mmol}$) was carried out under the same conditions as described for the synthesis of $\mathbf{3}$ by coupling of $\mathbf{2}$ with 1. Purification by chromatography with petroleum ether-EtOAc $(1: 1, V: V)$ as the eluent gave heptasaccharide $28(166 \mathrm{mg}, 81 \%) .[\alpha]_{\mathrm{D}}+25.5\left(c, 1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 8.16-7.17(\mathrm{~m}, 75 \mathrm{H}$, $15 \times$ Bz-H), $5.88\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.82$ $\left(\mathrm{dd}, J_{3,4}=J_{4.5}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.73-5.57(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{H}-3,2 \times \mathrm{H}-4), 5.49\left(\mathrm{dd}, J_{1,2}=7.9 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2), 5.45\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.40$ $\left(\mathrm{dd}, J_{1,2}=7.9 \mathrm{~Hz}, J_{2,3}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.29-5.23$ $(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{H}-2), 4.95\left(\mathrm{dd}, J_{3,4}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right)$, $4.90\left(\mathrm{~d}, J_{1,2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.84-4.75(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1$, $2 \times \mathrm{H}-4, \mathrm{H}-6), 4.73-4.38(\mathrm{~m}, 14 \mathrm{H}, 5 \times \mathrm{H}-1,9 \times \mathrm{H}-6)$, $4.34-3.52$ (m, $18 \mathrm{H}, 3 \times \mathrm{H}-2,4 \times \mathrm{H}-3,7 \times \mathrm{H}-5,4 \times \mathrm{H}-6$),
3.20 (s, 3H, CH3O), 2.02, 2.00, 1.99, 1.98 (s, 12H, $4 \times$ $\mathrm{CH}_{3} \mathrm{CO}$), 1.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 1.88 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 1.53 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$: 170.7, 169.8, 169.7, 169.5, 169.4, 169.3, 167.7 (7C, $7 \times$ $\mathrm{CH}_{3} \mathrm{CO}$), 166.1, 166. $0,165.9,165.5,165.4,165.1$, 165.0, 164.8, 164.1 ($15 \mathrm{C}, 15 \times \mathrm{PhCO}$, some signals overlapped), 133.7-132.2, 130.8, 130.1-129.0, 128.8-127.9 (PhC), 101.2, 101.0, 100.8, 100.2, 98.7, 98.0, 97.8 ($7 \mathrm{C}, 7 \times \mathrm{C}-1$), 73.5, 73.2, 72.8, 72.3, 72.2, $71.8,71.7,71.4,71.0,69.5,69.2,69.0,68.8,68.3,68.1$, 67.4, 66.6, 65.4, 63.2, 62.9, 62.8, 62.5, 62.1 (C-2-C-6), $55.4\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{O}\right), 20.6,20.6,20.6,20.5,20.2,18.9(7 \mathrm{C}$, $7 \times \mathrm{CH}_{3} \mathrm{CO}$, some signals overlapped). Anal. calcd for $\mathrm{C}_{162} \mathrm{H}_{148} \mathrm{O}_{58}$: C 64.37, H 4.93; found: C 64.03, H, 4.80.

Methyl β - D-glucopyranosyl-($1 \rightarrow 3$)-[β - D-glucopyra-nosyl-($1 \rightarrow 6$)-] α-D-mannopyranosyl-($1 \rightarrow 3$)- β - D-glu-copyranosyl-($1 \rightarrow 3$)-[β - D-glucopyranosyl-($1 \rightarrow 6$)-] β -D-glucopyranosyl-($\mathbf{1} \boldsymbol{\rightarrow} \mathbf{3}$)- α - D-glucopyranoside (29)

Compound 28 ($272 \mathrm{mg}, 0.09 \mathrm{mmol}$) was dissolved in a saturated solution of ammonia in $\mathrm{MeOH}(10 \mathrm{~mL})$. After two weeks at room temperature, the reaction solution was concentrated, and the residue was purified on a Biogel P2 column with MeOH -water as the eluent to afford $29(100 \mathrm{mg}, 95 \%)$ as a foamy solid. $[\alpha]_{\mathrm{D}}+16.5$ (c 1.0, $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right) \delta: 5.23(\mathrm{~d}$, $\left.J_{1,2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.98$ (d, $J_{1,2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.70\left(\mathrm{~d}, J_{1,2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.56\left(\mathrm{~d}, J_{1,2}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-1), 4.51\left(\mathrm{~d}, J_{1,2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.43\left(\mathrm{~d}, J_{1,2}=\right.$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.40\left(\mathrm{~d}, J_{1,2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)$,
4.18-3.15 (m, 45H, H-2-H-6, CH_{3}); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$, $100 \mathrm{MHz}) \delta: 103.7,102.5,102.4,102.3,100.4,100.0$, $98.4\left(J_{\mathrm{C}-1, \mathrm{H}-1}=165.1,165.1,165.1,165.1,165.1,176.4\right.$, and 176.4 Hz respectively, $7 \mathrm{C}-1$), 83.6, $82.2,80.0,77.8$, $75.5,75.4,75.3,75.1,75.0,74.8,74.0,72.7,72.6,72.5$, $71.8,71.6,71.5,70.8,69.4,69.2,69.1,69.0,68.4,68.1$, $67.5,67.4,57.0\left(\mathrm{C}-2-\mathrm{C}-6, \mathrm{OCH}_{3}\right)$. Anal. calcd for $\mathrm{C}_{43} \mathrm{H}_{74} \mathrm{O}_{36}: \mathrm{C} 44.25, \mathrm{H} 6.39$; found $\mathrm{C} 44.03, \mathrm{H}, 6.28$.

References

Sasaki, T.; Takasuka, N. Carbohydr. Res. 1976, 47, 99.
2 Bao, X.; Liu, C.; Fang, J.; Li, X. Carbohydr. Res. 2001, 332, 67.

3 Saito, H.; Ohki, T.; Takasuka, N.; Sasaki, T. Carbohydr. Res. 1977, 58, 293.
4 Ning, J.; Zhang, W.; Yi, Y.; Yang, G.; Wu, Z.; Yi, J.; Kong, F. Bioorg. Biomed. Chem. 2003, 11, 2193.

5 (a) Inoue, K.; Kawamoto, K.; Kadoya, S. Carbohydr. Res. 1983, 114, 245.
(b) Inoue, K.; Kohno, M.; Kadoya, S. Carbohydr. Res. 1983, 123, 305.
6 Zhang, J.; Kong, F. Tetrahedron: Asymmetry 2002, 13, 243.
7 Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21.
8 Zeng, Y.; Ning, J.; Kong, F. Tetrahedron Lett. 2002, 20, 3729.

9 Söderberg, E.; Westman, J.; Oscarson, S. J. Carbonhydr. Chem. 2001, 20, 397.

[^0]: ＊E－mail：fzkong＠mail．rcees．ac．cn；Tel．：86－10－62936613；Fax：86－10－62923563
 Received August 19，2003；revised and accepted January 1， 2004.
 Project supported by Chinese Academy of Sciences（No．KZCX3－J－08）and the National Science Foundation of China（Nos． 30070185 and 39970964）．

